US009438607B2

a2 United States Patent

Yasuie et al.

US 9,438,607 B2
Sep. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(30)

Mar. 28, 2013

(1)

(52)

(58)

INFORMATION PROCESSING APPARATUS
AND VERIFICATION CONTROL METHOD

Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)

Inventors: Takeshi Yasuie, Kawasaki (JP); Taichi
Sugiyama, Kawasaki (IP)

Assignee: FUJITSU LIMITED, Kawasaki (JP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 256 days.

Appl. No.: 14/221,454

Filed: Mar. 21, 2014

Prior Publication Data

US 2014/0297767 Al Oct. 2, 2014

Foreign Application Priority Data

(IP) 2013-067791

Int. CL.
HO4L 29/06
U.S. CL
CPC

(2006.01)

............. HO4L 63/12 (2013.01); HO4L 63/123
(2013.01)

Field of Classification Search

CPC HO4L 63/123; HOAL 63/12

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
8,914,675 B2* 12/2014 Hatano GOG6F 11/263
714/32
GO6F 21/44
726/22
HO4L 43/0811
370/252

GO6F 17/30371
707/639

9,015,830 B2* 4/2015 Yasuie

2011/0228684 Al* 9/2011 Sugiyama

2013/0246359 Al* 9/2013

Sugiyama

FOREIGN PATENT DOCUMENTS

JP 2009-301252 A 12/2009
JP 2009301252 A * 12/2009
JP 2010-113380 A 5/2010
JP 2010113380 A * 5/2010
JP 2010-205011 A 9/2010
JP 2010205011 A * 9/2010
JP 2011-199680 A 10/2011

* cited by examiner

Primary Examiner — Michael C Lai
(74) Attorney, Agent, or Firm — Fujitsu Patent Center

(57) ABSTRACT

An information processing apparatus obtains a plurality of
messages transmitted between a client and a server, each
message including at least one of a plurality of parameters
and a value of the parameter. The information processing
apparatus detects a parameter having different values set in
different messages among the obtained plurality of mes-
sages, from among the plurality of parameters. According to
the detection result, the information processing apparatus
determines a rewrite parameter whose value is rewritten
when using the plurality of messages for verification of a
server, among the plurality of parameters.

8 Claims, 15 Drawing Sheets

i
21 i =
=
A MESSAGE HY paral=eal
CLIENT SERVER
MESSAGE 2} parat=aQ | paralsh(
MESSAGE 3§ para2=b! | parald=c0
INFORMATION PROCESSING 10
APPARATUS -~
11 12
STORAGE |~ |DETERMINA-F
UNIT TION UNIT
Aty
%
MESSAGE 1]} parat=ad]
MESSAGE 2§} parai=al SERVER

U.S. Patent Sep. 6, 2016 Sheet 1 of 15 US 9,438,607 B2

MESSAGE 1} parai=al ~~
CLIENT ' SERVER
MESSAGE 2§ paral=al | para2=b(

MESSAGE 3} para2=bi parad=cl

INFORMATION PROGESSING 10
APPARATUS _
i1 12
STORAGE ' |DETERMINA-H
ONIT TION UNIT

MESSAGE 1}l parai=al

+

MESSAGE 2l parai=al

SERVER

MESSAGE 3§

U.S. Patent Sep. 6, 2016 Sheet 2 of 15 US 9,438,607 B2

SERVER APPARATUS
VERIFICATION (VERIFICATION SYSTEM)

APPARATUS

232

CLIENT APPARATUS

SERVER APPARATUS
eommen ACTIVE SYSTEM) |

U.S. Patent Sep. 6, 2016 Sheet 3 of 15 US 9,438,607 B2

211 221
CLIENT SERVER
APPARATUS APPARATUS

GET /service®parai=iii HTTR/1.1

“html> ‘
<input type="hidden” name="para2” valuex"222">
<Shtmby

POST /service/sub HTTRP/1.1
Cookie: para3="333":

parad=222

HTTP/1.1 200 0K

FIG. 3

U.S. Patent

Sep. 6, 2016

Sheet 4 of 15

US 9,438,607 B2

FIG. 4

VERIFICATION APPARATUS l?ﬂ
101 104 111
—_ IMAGE SIGNAL |-
CPU PROCESSING
UNIT r——
DISPLAY
102 105 112
I INPUT SIGNAL |-
RAM PROCESSING
UNIT
INPUT DEVICE
103 106 113
oo 1 MEDIUM ”fé,”“ '
| READER ~-
STORAGE
MEDIUM
1071
COMMUNICA- L <
TION
INTERFACE NS
SWITCH

U.S. Patent Sep. 6, 2016 Sheet 5 of 15 US 9,438,607 B2

VERIFICATION APPARATUS 3,?0
LEARNING UNIT 130
, — 121 131
e A CAPTURE UNIT
MESSAGE 132
STORAGE UNIT PARAMETER »
, ANALYSIS UNIT

N

PARAMETER | 4
INFORMATION VERIFICATION UNIT 140
STORAGE UNIT 141}~
NS , " COMMUNICATION |/

123 REPRODUCTION UNIT
S 142
RESPONSE _
VERIFICATION COMPARISON UNIT
MESSAGE |] b T
STORAGE UNIT | 143
NSt PARAMETER -
ANALYSIS UNIT

DISPLAY CONTROL UNIT V-~

FIG. 5

US 9,438,607 B2

Sheet 6 of 15

Sep. 6, 2016

U.S. Patent

9 OId

- - - %0 002 GOL1EXX CLUEEXX CZOC000EL | &t

Odp=issn a/gp=uaoyyne | wloj/eoiaies/ 180d OLVEXX GOL1EXX 120°20-00€1 i

- 3{§p=UsKO} Y3Nne — A0 002 SOLTTXX BLUEX 1007200061 | OF

-) f=UoISsaA oINS/ 149 gL X GOLHTXX @uw‘.‘woﬂca“ww 6

~ - - HO 002 00 w.w,N.Kx QLXK C20'10-008t 8

0.8 | dasn OZAE=USMOYINE | WIBO|/00IAIDS 150d DELTEXX 001 1TXX 1E0' 100081 L

- oZag=usoy Lzne e 30 002 0011T%X OV XX 100°10°:00€1 g

- 0 p=uoisian d0INIBS 1 130 QLYY Q0L LVTXY 000100081 g

- - - A0 007 001 1E XX OL1EXX 220°0000:E1 ¥

08 | A3 GEIp=UDMOI Ine | uFo}/edines) 180d DELEXX 0OL1ZXX 12000001 £

- GRig=unoy LIne - 1O 002 GOV1ITXX O ELEXX 100°00:00'81 <

- (i=uoisian BaiAIBS/ 13D OLUEXX B0 XX 000000081 i

2 3LV | | H3LTHVHV Hivd | 3000/00H13M | o 3SRI00 ﬂwmmwmmﬁmmmmm WL | on
¢MMu | 41dv1 30VSSIN

U.S. Patent Sep. 6, 2016 Sheet 7 of 15 US 9,438,607 B2

PARAMETER DETEGTION TABLE :}5
CLIENT ADDRESS | PARAMETER NAME | VALUE
, it bt -

XX.2.1.100 version | 10
XX.2.1.100 authtoken | 0fa5
XX.2.1.100 user Taro
XX.2.1.105 version 1.0
XX.2.1.108 auth _token &Q?e

rrrrrrrrrrrr X k.Z.i.YDS usey Jiro

FIG. 7

U.S. Patent

Sep. 6, 2016 Sheet 8 of 15 US 9,438,607 B2

ANALYSIS RESULT TABLE :j’-ﬁ
DETERMINAT 10N ‘ TN e
RESULT PARAMETER NAME REWRHINGMETHG{)
o VALUE OF <input type="hidden”
DEPENDENT auth_token name=" auth_token » OF IMMEDIATELY
PRECEDING RESPONSE MESSAGE
INDEPENDENT version —

U.S. Patent Sep. 6, 2016 Sheet 9 of 15

C PARAMETER smm)

ANALYSIS
®
510

SELECT A MESSAGE

4 St

US 9,438,607 B2

< PARAMETER INCLUDED? > MO

\L YES -S12

EXISTING?

< CLIENT AND PARAMETER ™ NO o} ENTER IN DETECTION TABLE

_-S17

DIFFERENT?

CLIENT AND PARAMETER NO PARAMETER AND VALUE NO
EXISTING AND VALUES BEING EXESTING{};?ggggng%TS BEING

\L YES _-S15

DETERMINE AS STATUS~ DETERMINE AS STATUS~
DEPENDENT PARAMETER INDEPENDENT PARAMETER

] Yes 818

516

| DETERMINE REWRITING

METHOD FROM IMMEDIATELY

PRECEDING RESPONSE
MESSAGE

<

4 _-S19

YES
<ANY MESSAGE REMAINING?

NO

¥

(END ”)

FIG. 9

U.S. Patent Sep. 6, 2016 Sheet 10 of 15 US 9,438,607 B2

SERVER 1
(VERIFICATION)
_-S20

EXTRACT MESSAGES HAVING
SAME TRANSMISSION SOQURCE
AND DESTINATION

wt

) r,»SE‘!

COMMUNICATE WITH
VERIFIGATION SERVER WHILE
REPLACING PARAMETER
VALUES

t _-522

SELECT A RESPONSE
MESSAGE

J, 823 YES _-S24

RESPONSE EQUIVALENT TO N_'ES /“ANY RESPONSE MESSAGE N\ _NO
ACTIVE SYSTEM? REMAINING?
y NO 825
CHECK PARAMETER OF
IMMEDIATELY PREGEDING
REQUEST MESSAGE
¥ 526
ANY UNDETERMINED SO
PARAMETER EXISTING?

y YES -S27 \! 829
ESTIMATE AS STATUS- REPORT ERROR OF
DEPENDENT PARAMETER VERIFICATION SYSTEM

v 528

DETERMINE REWRITING \F
METHOD FROM IMMEDIATELY
PRECEDING RESPONSE END ‘
MESSAGE

FIG. 10

U.S. Patent Sep. 6, 2016 Sheet 11 of 15 US 9,438,607 B2

ACTIVE SYSTEM

200 OK

POST paral=aaa

200 OK paraZ=bbb

POST paral=aaa; paraZ=hbb
200 OK

O RS e KO PO e

DEPENDENT || —
i:l INDEPENDENT! parat

VERIFICATION SYSTEM

{1st TIME)
1 GET
2 200 OK
3 BOST paral=aaa
4a 200 0K paraZ=ccc
5 POST paral=aaa; paraZ=bbb
8a 800 Internal Server Error

DEPENDENT # para2
: INDEPENDENT |} paral

VERIFICATION SYSTEM

_(2nd TIME)
1 GET
2 200 OK
3 PQST paral=asa
4b 200 QK paraZ=ddd
5b POST paral=aaa; paraZ=ddd
6 200 0K

FIG. 11

U.S. Patent

Sep. 6, 2016

Sheet 12 of 15

ol Bal el

MESSAGE TABLE 34
No | METHOD/CODE PARAMETER 1 PARAMETER 2
S ek s s
1 GET version=10 -
2 200 OK auth_token=0fa5 -
3 POST auth»tnken:{}fﬁ user=Taro
4 200 OK - -
5 GET Version%?:*rfilj VVVVVVVVVV -
8 200 OK auth_token=3b2c -
7 POST auth_token=3b2e | user=Taro
8 200 OK - -
g GET version=1.0 -
10 280 OK auth_token=d87e -
1 POST auth_token=dd7e user=liro
12 200 OK - e

FIG. 12

US 9,438,607 B2

PARAMETER
ANALYSIS

{REQUEST MESSAGE)

-

X'XIX

U.S. Patent

Sep. 6, 2016 Sheet 13 of 15 US 9,438,607 B2

(PARAMETER STATIC

ANALYSIS
830
DIVIDE MESSAGES INTO
BLOCKS
-~ S31
N =1
A -~ $32
SELECT Nth BLOCK FROM TOP)
533
PARAMETER ANALYSIS IN
BLOCK)
534
‘[’ — NO
< ANY BLOCK REMAINING? >——
y YES S35
SELECTS Nth BLOCK FROM
BOTTOM
N _-S36
PARAMETER ANALYSIS IN
BLOCK
‘ 837
\L - NO
< ANY BLOCK REMAINING? >——>
77777777777777777777777777777 | YES -S38
N++

\L :
(END)

FIG. 13

U.S. Patent

Sep. 6, 2016 Sheet 14 of 15
1 From A GET
2 To A 200 QK
3 From A FOST
4 To A 200 OK
5 From A GET
8 To A 200 OK
7 From A POST
8 To A 200 OK
9 From B GET
10 To B 200 OK
9991 From C GET
9992 To G 200 QK
9983 From D GET
9994 To D 200 OK
9995 From A GET
9996 To A 200 OK
9997 From A POST
6948 To A 200 OK
8999 From G POST
- 10000 To G 200 OK

FIG. 14

US 9,438,607 B2

PARAMETER
ANALYSIS

(1

(2}

(3

(4)

U.S. Patent Sep. 6, 2016 Sheet 15 of 15 US 9,438,607 B2
- 300 SERVER APPARATUS
VIRTUAL MACHINE 3}9 VIRTUAL MACHINE ﬁfﬂ | VIRTUAL MACHINE f}ﬁ
SERVER SERVER B
SOFTWARE | 1311| | SOFTWARE | |321! | VERIFICATION| |33
(ACTIVE | |/ (VERIFICATION} | ~ SOETWARE »
SYSTEM) SYSTEM) [o
08 0S 0s
HYPERVISOR a1 340
VIRTUAL SWITCH |~ o

FIG. 15

US 9,438,607 B2

1
INFORMATION PROCESSING APPARATUS
AND VERIFICATION CONTROL METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2013-
067791, filed on Mar. 28, 2013, the entire contents of which
are incorporated herein by reference.

FIELD

The embodiments discussed herein relate to an informa-
tion processing apparatus and a verification control method.

BACKGROUND

It may be desired, in a process of operating or maintaining
an information processing system, to verify whether or not
a computer and another computer have the equivalent func-
tion. For example, there may be a case of verifying, before
replacing a currently used computer with a new computer,
whether or not the function of the original computer is also
realized in the new computer. In addition, for example, a
degradation test may be performed before updating software
of a computer, in which the software is experimentally
updated on a computer for testing to check whether or not
operation of another software varies due to influence of the
update. In addition, for example, when any failure occurs in
a computer for business operation, there may be a case of
reproducing the failure on a computer for debugging to
analyze a cause of the failure.

As a computer to be verified, a server is conceivable,
which receives a request message from a client and transmits
a response message to the client according to the request
message. The client and the server may be a physical
computer (also referred to as a physical machine), or may be
a virtual computer (also referred to as a virtual machine). In
this case, a black-box verification method, which uses
messages transmitted between a server and a client in the
past to verify another server, may be employed as the
verification method.

For example, a verification apparatus obtains a request
message transmitted from a client to a server in the past and
a response message transmitted from the server to the client
in the past. The verification apparatus transmits the obtained
past request message to another server and receives, from
the other server, a response message to the request message.
The verification apparatus then determines whether or not a
function equivalent to that of the original server is realized
in the other server by comparing the response message
received from the other server with the obtained past
response message.

There is proposed a test apparatus which evaluates the
relative performance of a standby server with respect to an
active server by capturing packets transmitted to and from
the active server and transferring the captured packets to the
standby server. In addition, there is proposed a test platform
apparatus for testing a Web application in which a parameter
name in a Web page provided to a client varies for each
access from the client. The test platform apparatus prelimi-
narily stores a parameter definition rule which defines a
parameter whose name varies. The test platform apparatus
extracts from a Web page a parameter which complies with
the parameter definition rule, and substitutes the name and
the value of the extracted parameter with a predetermined

10

20

25

30

35

40

45

2

name and a predetermined value, thereby enabling an auto-
matic test tool operating on the client to process the Web
page.

Japanese Patent Laid-open Patent Publication No. 2011-
199680

Japanese Patent Laid-open Patent Publication No. 2010-
113380

Meanwhile, when a server and another server operate
according to a value of a parameter included in a request
message, directly using a request message transmitted
between a client and a server in the past may result in
incorrect verification of another server.

For example, the client may transmit, to the server, a
request message including a value of a parameter which
depends on a session such as a session ID or authentication
information. In such a case, in response to transmission of
the past request message without change to the other server,
the other server may regard the value of the parameter as an
abnormal value related to a non-existent session and return
an error to the client. In addition, for example, the client may
transmit a request message including a value of a parameter
which depends on a physical state of the server, such as the
MAC (Media Access Control) address of the server. Also in
such a case, in response to transmission of the past request
message without change to the other server, the other server
may determine the value of the parameter to be inappropri-
ate and return an error to the client.

Therefore, it is conceivable, when using messages trans-
mitted between a server and a client in the past, to rewrite
at least a part of the values of parameters included in the
message. However, there is a problem that preliminarily
defining, by a user instructing verification, a parameter
whose value is to be rewritten among parameters that may
be included in the messages imposes a large burden on the
user. This is because it is difficult to accurately define a
parameter whose value is to be rewritten, unless the user
knows the details of the software that performs message
processing.

SUMMARY

According to an aspect, there is provided an information
processing apparatus including a memory configured to
store a plurality of messages transmitted between a client
and one more servers, each message including at least one
of'a plurality of parameters and a value of the parameter, and
a processor configured to detect, among the plurality of
parameters, a parameter having different values set in dif-
ferent messages and, according to the detection result,
determine a rewrite parameter whose value is rewritten
when using the plurality of messages for verification of
another server, among the plurality of parameters.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an information processing system of a
first embodiment;

FIG. 2 illustrates an information processing system of a
second embodiment;

US 9,438,607 B2

3

FIG. 3 illustrates exemplary parameters included in mes-
sages;

FIG. 4 is a block diagram illustrating an exemplary
hardware of a verification apparatus;

FIG. 5 is a block diagram illustrating an exemplary
function of the verification apparatus;

FIG. 6 illustrates an exemplary message table;

FIG. 7 illustrates an exemplary parameter detection table;

FIG. 8 illustrates an exemplary analysis result table;

FIG. 9 is a flow chart illustrating an exemplary procedure
of parameter static analysis;

FIG. 10 is a flow chart illustrating an exemplary proce-
dure of server verification;

FIG. 11 illustrates an exemplary verification message;

FIG. 12 illustrates a first example of a message selection
method;

FIG. 13 is a flow chart illustrating another exemplary
procedure of the parameter static analysis;

FIG. 14 illustrates a second example of the message
selection method; and

FIG. 15 is a block diagram illustrating another exemplary
function of the server apparatus.

DESCRIPTION OF EMBODIMENTS

Several embodiments will be described below with ref-
erence to the accompanying drawings, wherein like refer-
ence numerals refer to like elements throughout.

First Embodiment

FIG. 1 illustrates an information processing system of a
first embodiment.

The information processing system of the first embodi-
ment includes an information processing apparatus 10, a
client 21, and servers 22 and 23. The information processing
system uses messages transmitted between the client 21 and
one or more servers including the server 22 to verify
operation of one or more servers including the server 23. As
the server 23, for example, there are conceivable a new
server scheduled to replace the server 22, a server for testing,
before updating software of the server 22, the operation after
the update, a server for debugging for reproducing a failure
occurred in the server 22 to analyze the cause thereof, or the
like.

The client 21 and the servers 22 and 23 may be physical
machines, or may be virtual machines. In the former case,
for example, the information processing apparatus 10, the
client 21 and the servers 22 and 23 are connected to a
network having a communication apparatus such as a
switch. In the latter case, two or more of the client 21 and
the servers 22 and 23 may operate on the same physical
machine. The physical machine on which a virtual machine
operates may be the information processing apparatus 10.

The information processing apparatus 10 has a storage
unit 11 and a determination unit 12. The storage unit 11 may
be a volatile storage apparatus such as a RAM (Random
Access Memory), or may be a nonvolatile storage apparatus
such as an HDD (Hard Disk Drive). The determination unit
12 is realized using a processor, for example. The determi-
nation unit 12 may include a CPU (Central Processing Unit),
a DSP (Digital Signal Processor), an ASIC (Application
Specific Integrated Circuit), an FPGA (Field-Programmable
Gate Array), and the like. When a processor is used, the
processor executes a program to perform the procedure
described below, for example.

10

15

20

25

30

35

40

45

50

55

60

65

4

The storage unit 11 stores a plurality of messages trans-
mitted between the client 21 and one or more servers
including the server 22. Each message includes at least one
of a plurality of parameters and a value of the parameter.
Messages to be stored in the storage unit 11 are collected, for
example, by capturing, by the information processing appa-
ratus 10, packets transmitted between the client 21 and the
server 22. The messages to be collected may be limited to
messages relating to a predetermined protocol such as the
HTTP (Hypertext Transfer Protocol).

For example, the plurality of messages to be stored in the
storage unit 11 includes messages 1 to 3 transmitted from the
client 21 to the server 22. As a pair of a parameter name and
a parameter value, the message 1 includes paral=a0, the
message 2 includes paral=a0 and para2=b0, and the mes-
sage 3 includes para2=bl and para3=c0. In other words,
paral is included in the messages 1 and 2, with the value
thereof being the same for the message 1 and the message 2.
Although para2 is included in the messages 2 and 3, the
value thereof is different between the message 2 and the
message 3. Here, the parameters are application layer
parameters such as those described in the HTTP header and
the HTTP body, for example.

The determination unit 12 detects, from messages stored
in the storage unit 11, a parameter having different values set
in different messages among a plurality of parameters that
may be included in the messages. The determination unit 12
then determines, according to the detection result, a rewrite
parameter whose value is rewritten when using messages
stored in the storage unit 11 for verification of the server 23
(or, a plurality of servers including the server 23). For
example, the determination unit 12 determines, as the
rewrite parameter, a parameter having different values set in
different messages transmitted or received by the same client
(the client 21). In the case of the above example, the
determination unit 12 determines para2 as the rewrite
parameter, among paral, para2 and para3.

The determination unit 12 may detect a parameter satis-
fying the condition described above, referring only to a
request message (or referring preferentially to a request
message) among a request message transmitted by the client
21 and a response message transmitted by the server 22. In
addition, the determination unit 12 may detect a parameter
satisfying the condition described above by referring to a
plurality of messages stored in the storage unit 11 in a
different order from the transmission order. For example, the
determination unit 12 may perform a comparison of param-
eters included in messages which are separated from each
other in terms of a transmission timing more preferentially
than a comparison of parameters included in messages
which are close to each other in terms of the transmission
timing.

Subsequently, the value of the determined rewrite param-
eter is rewritten when verifying the server (or, a plurality of
servers including the server 23). For example, para2 is
determined as the rewrite parameter, whereas paral and
para3 are determined as non-rewrite parameters whose val-
ues are not rewritten. Accordingly, for example, the message
1 including paral=a0 is transmitted to the server 23, the
message 2 including paral=a0 and para2=b2 is transmitted
to the server 23, and the message 3 including para2=b3 and
para3=cO is transmitted to the server 23.

The value of a rewrite parameter (e.g., b2 or b3 described
above) may be automatically calculated during the process
of veritying the server 23. The determination unit 12 may
determine the method of rewriting the value, based on a
response message transmitted before a request message

US 9,438,607 B2

5

including the rewrite parameter (e.g., a response message
immediately before the request message), among messages
stored in the storage unit 11. In such a case, the value of a
parameter of a request message transmitted to the server 23
thereafter is rewritten, based on the response message trans-
mitted by the server 23 during the process of verification.
Verification of the server 23 may be performed by the
information processing apparatus 10 or another information
processing apparatus.

According to the information processing system of the
first embodiment, it is possible to determine a parameter
whose value is to be rewritten, such as a parameter which
depends on the session or a parameter which depends on the
physical state of the server, from among parameters that may
be included in a message. Therefore, when verifying the
server 23 using messages transmitted between the client 21
and the server 22, it becomes possible to prevent incorrect
verification due to parameter abnormality. In addition, the
user need not preliminarily define the parameter whose
value is to be rewritten and therefore the user need not know
the details of the software to be executed on the server 23,
and thereby the burden of the user is reduced.

Second Embodiment

FIG. 2 illustrates an information processing system of a
second embodiment.

The information system of the second embodiment has a
switch 30, a verification apparatus 100, client apparatuses
211 and 212, and server apparatuses 221, 222, 231 and 232.

The switch 30 is a communication apparatus which trans-
fers packets. The switch 30 has a port mirroring function
which copies packets passing through a particular normal
port or all normal ports, and outputs the copied packets from
a mirror port which is different from the normal port. The
verification apparatus 100 is connected to the mirror port.
The switch 30 copies packets transmitted between the client
apparatuses 211 and 212 and the server apparatuses 221 and
222, and transmits the copied packets to the verification
apparatus 100. As a method of capturing packets by the
verification apparatus 100, the method may use a tap which
copies a signal on a transmission medium in place of the
switch 30.

The client apparatuses 211 and 212 are client computers
each as a terminal apparatus operated by a user. The server
apparatuses 221, 222, 231 and 232 are server computers,
each configured to receive a request message, perform a
process according to the request message, and return a
response message. In the second embodiment, a Web server
which performs HTTP communication is mainly assumed as
the server apparatuses 221, 222, 231 and 232. However, the
server apparatuses 221, 222, 231 and 232 may be other types
of server computers.

The server apparatuses 221 and 222 among the above-
mentioned server apparatuses are active server apparatuses
which are currently used for business operation. The server
apparatuses 221 and 222 receive a request message (e.g.,
HTTP request) from the client apparatuses 211 and 212, and
transmit a response message (e.g., HTTP response) to the
client apparatuses 211 and 212.

On the other hand, the server apparatuses 231 and 232 are
verification server apparatuses which are not currently used
for business operation. For example, as the server appara-
tuses 231 and 232, a server apparatus is conceivable which
is scheduled to replace the server apparatuses 221 and 222
(to be used for business operation after system migration). In
addition, for example, as the server apparatuses 231 and 232,

10

15

20

25

30

35

40

45

50

55

60

65

6

a server apparatus for testing is conceivable which checks,
before updating software of the server apparatuses 221 and
222, the operation after the update. In addition, for example,
as the server apparatuses 231 and 232, a server apparatus for
debugging is conceivable which analyzes failures occurred
in the server apparatuses 221 and 222. The server appara-
tuses 231 and 232 receive a request message from the
verification apparatus 100 and transmit a response message
to the verification apparatus 100.

The verification apparatus 100 is a computer which veri-
fies the server apparatuses 231 and 232 in a black-box
manner, using messages transmitted between the client
apparatuses 211 and 212 and the server apparatuses 221 and
222. The verification apparatus 100 may be a terminal
apparatus operated by a user, or may be a server apparatus
accessed from a terminal apparatus.

In verifying the server apparatuses 231 and 232, the
verification apparatus 100 captures packets received from
the switch 30, and extracts, from the captured packets, past
messages (e.g., HI'TP message) transmitted or received by
the server apparatuses 221 and 222. The verification appa-
ratus 100 transmits the extracted past request messages to
the server apparatuses 231 and 232, and receives response
messages from the server apparatuses 231 and 232. The
verification apparatus 100 then compares the response mes-
sages received from the server apparatuses 231 and 232 with
the past response messages, and thereby verifies whether or
not the operation of the server apparatuses 231 and 232
observed from the client apparatuses 211 and 212 is equiva-
lent to that of the server apparatuses 221 and 222.

However, a message transmitted between the client appa-
ratuses 211 and 212 and the server apparatuses 221 and 222
may include a parameter which depends on the communi-
cation status such as a session-dependent parameter or a
server-apparatus-dependent parameter. In response to trans-
mission of the past request message without change includ-
ing a communication-status-dependent parameter to the
server apparatuses 231 and 232, the server apparatuses 231
and 232 may reject the request message, by determining the
session or the server apparatus indicated by the value of the
parameter to be inappropriate. Therefore, the verification
apparatus 100 determines a status-dependent parameter
from among parameters which may be included in the
messages, and rewrites the value of the status-dependent
parameter included in the request message as appropriate,
according to the communication status with the server
apparatuses 231 and 232.

FIG. 3 illustrates exemplary parameters included in mes-
sages.

Here, consider a case where an HTTP message is trans-
mitted between the client apparatus 211 and the server
apparatus 221. The verification apparatus 100 determines a
status-dependent parameter from among parameters
included in the header and the body of the HTTP message.

The name and the value of the parameter may be added to
the URL (Uniform Resource Locator) described in the
header of the HTTP request. For example, when the URL
has a description /service?paral=111, paral is the parameter
name and 111 is the value thereof. In addition, the name and
the value of the parameter may be described as a Cookie in
the header of the HTTP request. For example, when a
Cookie has a description para3=333”, para3 is the param-
eter name and 333 is the value thereof.

In addition, the name and the value of the parameter may
be described as input data of the POST method in the body
of the HTTP request. For example, when the input data has
a description para2=222, para2 is the parameter name and

US 9,438,607 B2

7

222 is the value thereof. In addition, the name and the value
of the parameter may be included in the HTML (Hypertext
Markup Language) tag described in the body of the HTTP
response. For example, when the HTML tag has a descrip-
tion <input type="hidden” name="para2” value="222">,
para2 is the parameter name and 222 is the value thereof.

The value of the parameter included in the HTTP response
received by the client apparatus 211 before the HTTP
request may be used as the value of the parameter included
in the HTTP request transmitted by the client apparatus 211.
For example, it is assumed that an HT TP response including
para2=222 is transmitted to the client apparatus 211 from the
server apparatus 221. In such a case, an HTTP request
transmitted immediately thereafter from the client apparatus
211 to the server apparatus 221 may include para2=222.

As has been described above, the parameters may include
a status-dependent parameter such as a session-dependent
parameter or a server-apparatus-dependent parameter. A
parameter indicating the session ID or authentication infor-
mation may be cited as an example of a session-dependent
parameter.

The session ID varies for each session as a general rule,
and the authentication information varies, as a general rule,
each time the server apparatus 221 performs authentication.
For example, the server apparatus 221 transmits an HTTP
response including a session ID to the client apparatus 211,
and the client apparatus 211 transmits an HTTP request
including the session ID to the server apparatus 221, which
allows the server apparatus 221 to identify the session to
which the HTTP request belongs. A physical address such as
the MAC address may be cited as an example of a server-
apparatus-dependent parameter. The value of the server-
apparatus-dependent parameter varies according to the
access destination server apparatus.

FIG. 4 is a block diagram illustrating an exemplary
hardware of the verification apparatus.

The verification apparatus 100 has a CPU 101, a RAM
102, an HDD 103, an image signal processing unit 104, an
input signal processing unit 105, a medium reader 106, and
a communication interface 107. The CPU 101 is an example
of the determination unit 12 of the first embodiment, and the
RAM 102 or the HDD 103 is an example of the storage unit
11 of the first embodiment.

The CPU 101 is a processor including an operational
circuit which executes instructions of programs. The CPU
101 loads at least a part of a program and data stored in the
HDD 103 into the RAM 102, and executes the program. The
CPU 101 may include a plurality of processor cores and the
verification apparatus 100 may include a plurality of pro-
cessors, and accordingly the procedure described below may
be performed in parallel using the plurality of processors or
processor cores. In addition, a set of processors (multipro-
cessors) may be referred to as a “processor”.

The RAM 102 is a volatile memory which temporarily
stores programs executed by the CPU 101 or data which is
used by the CPU 101 for calculation. The verification
apparatus 100 may include any type of memory other than
a RAM, and may include a plurality of memories.

The HDD 103 is a nonvolatile storage apparatus which
stores software programs such as the OS (Operating System)
and application software, and also stores data. The verifi-
cation apparatus 100 may include another type of storage
apparatus such as a flash memory or an SSD (Solid State
Drive), and may include a plurality of nonvolatile storage
apparatuses.

The image signal processing unit 104 outputs images to a
display 111 connected to the verification apparatus 100,

10

15

20

25

30

35

40

45

50

55

60

65

8
according to an instruction from the CPU 101. A CRT
(Cathode Ray Tube) display, a liquid crystal display (LCD),
a plasma display (PDP: Plasma Display Panel), an organic
EL (OELD: Organic Electro-Luminescence) display, or the
like may be used as the display 111.

The input signal processing unit 105 obtains an input
signal from an input device 112 connected to the verification
apparatus 100, and outputs the input signal to the CPU 101.
A pointing device such as a mouse, touch panel, touchpad,
or a track ball, a keyboard, a remote controller, a button
switch, or the like may be used as the input device 112. In
addition, a plurality of types of input devices may be
connected to the verification apparatus 100.

The medium reader 106 is a drive unit which reads
programs and data stored in a recording medium 113. A
magnetic disk such as a flexible disk (FD) or an HDD, an
optical disk such as a CD (Compact Disc) ora DVD (Digital
Versatile Disc), an MO disk (Magneto-Optical disk), a
semiconductor memory, for example, may be used as the
recording medium 113. The medium reader 106 stores the
programs or data which have been read from the recording
medium 113, for example, in the RAM 102 or the HDD 103.

The communication interface 107 is an interface con-
nected to the switch 30 to transmit and receive packets. The
communication interface 107 receives, from the switch 30,
a copy of packets transmitted between the client apparatuses
211 and 212 and the server apparatuses 221 and 222. In
addition, the communication interface 107 transmits packets
to the server apparatuses 231 and 232, and receives packets
from the server apparatuses 231 and 232. The verification
apparatus 100 may include a communication interface for
capturing packets and, separately, a communication inter-
face for communicating with the server apparatuses 231 and
232.

However, the verification apparatus 100 need not include
the medium reader 106. In addition, the verification appa-
ratus 100 need not include the image signal processing unit
104 and the input signal processing unit 105 when the
verification apparatus 100 may be controlled from a terminal
apparatus via a network.

FIG. 5 is a block diagram illustrating an exemplary
function of the verification apparatus.

The verification apparatus 100 has a message storage unit
121, a parameter information storage unit 122, a verification
message storage unit 123, a learning unit 130, a verification
unit 140, and a display control unit 150. The message
storage unit 121, the parameter information storage unit 122,
and the verification message storage unit 123 may be
realized as a storage area secured in the RAM 102 or the
HDD 103, for example. The learning unit 130, the verifica-
tion unit 140, and the display control unit 150 may be
realized as a software module executed by the CPU 101, for
example.

The message storage unit 121 stores messages or a part of
information included in the messages transmitted between
the client apparatuses 211 and 212 and the server appara-
tuses 221 and 222. The parameter information storage unit
122 stores an analysis result of parameters included in the
messages and information of the intermediate progress of
the analysis. The analysis result includes information indi-
cating a status-dependent parameter, information indicating
a status-independent parameter, and information indicating a
method of rewriting the value of the status-dependent
parameter at the time of verification. When verifying the
server apparatuses 231 and 232, the verification message
storage unit 123 stores messages or a part of information

US 9,438,607 B2

9

included in the messages transmitted between the verifica-
tion apparatus 100 and the server apparatuses 231 and 232.

The learning unit 130 analyzes messages transmitted
between the client apparatuses 211 and 212 and the server
apparatuses 221 and 222, and learns a method of verifying
the server apparatuses 231 and 232. The learning unit 130
has a capture unit 131 and a parameter analysis unit 132.

The capture unit 131 captures packets (e.g., IP (Internet
Protocol) packets) received from the switch 30. When
packets to be copied by the switch 30 include those trans-
mitted by a computer other than the client apparatuses 211
and 212 and the server apparatuses 221 and 222, the capture
unit 131 may limit the packets to be captured. The capture
unit 131 then extracts messages from a set of captured
packets and stores the messages or a part of information
included in the messages in the message storage unit 121. In
this occasion, the capture unit 131 may limit the messages
to be extracted to those related to the protocol (e.g., HT'TP)
of a predetermined application layer.

Referring to the message storage unit 121, the parameter
analysis unit 132 analyzes parameters included in messages,
before verification of the server apparatuses 231 and 232 is
started (static analysis). As will be described below, the
parameter analysis unit 132 identifies three items: the client
apparatus which transmitted or received the message, the
parameter included in the message, and the value of the
parameter. The parameter analysis unit 132 then determines
the status-dependent parameter and the status-independent
parameter, based on accordance or discordance of the above-
mentioned three items among different messages. The
parameter analysis unit 132 stores the analysis result in the
parameter information storage unit 122.

The verification unit 140 verifies whether or not the
operation of the server apparatuses 231 and 232 are equiva-
lent to that of the server apparatuses 221 and 222, based on
the learning result of the learning unit 130. The verification
unit 140 has a communication reproduction unit 141, a
response comparison unit 142, and a parameter analysis unit
143.

Referring to the message storage unit 121, the commu-
nication reproduction unit 141 reproduces, on the server
apparatuses 231 and 232, the access from the client appa-
ratuses 211 and 212 to the server apparatuses 221 and 222.
In other words, the communication reproduction unit 141
transmits, to the server apparatuses 231 and 232, a request
message transmitted from the client apparatuses 211 and 212
to the server apparatuses 221 and 222 in the past, with the
transmission order being preserved. In this occasion, the
communication reproduction unit 141 rewrites values of
parameters included in the request message transmitted in
the past as appropriate, based on the analysis result of
parameters stored in the parameter information storage unit
122.

In the course of verification, the communication repro-
duction unit 141 stores, in the verification message storage
unit 123, the request message or a part of information
included in the request message transmitted to the server
apparatuses 231 and 232. In addition, the communication
reproduction unit 141 stores, in the verification message
storage unit 123, the response message or a part of infor-
mation included in the response message received from the
server apparatuses 231 and 232 in response to the request
message. However, it may be configured such that the
request message or a part of information included in the
request message is not stored in the verification message
storage unit 123.

20

35

40

45

10

Referring to the message storage unit 121 and the veri-
fication message storage unit 123, the response comparison
unit 142 compares the response message transmitted by the
server apparatuses 221 and 222 in the past with the response
message transmitted by the server apparatuses 231 and 232,
and determines the equivalence of the both messages. When
the two response messages are not equivalent, the response
comparison unit 142 calls the parameter analysis unit 143.

In this occasion, the response messages may include
session-dependent information or server-apparatus-depen-
dent information, and therefore the response comparison
unit 142 may determine that the two response messages are
“equivalent” even when contents of the two response mes-
sages do not completely match. For example, the response
comparison unit 142 determines that response messages
having the same HTTP status code are equivalent. The
HTTP status code is a code indicating the status of the
server, such as a code 200 indicating the success of the
HTTP request, a code 500 indicating the occurrence of an
unexpected error in the server while processing an HTTP
request. In addition, for example, the response comparison
unit 142 determines that response messages are equivalent
when similarity of character strings included in the body of
the HTTP response is equal to or higher than a predeter-
mined threshold value.

Referring to the verification message storage unit 123, the
parameter analysis unit 143 analyzes, in the course of
verification (dynamic analysis), parameters included in mes-
sages transmitted between the verification apparatus 100 and
the server apparatuses 231 and 232. This is performed taking
into account the possibility that not all the status-dependent
parameters have been identified in the static analysis by the
parameter analysis unit 132.

In other words, when it is determined that one response
message received from the server apparatuses 231 and 232
is not equivalent to a past response message corresponding
thereto, the parameter analysis unit 143 assumes that this is
due to rewriting failure of the value of the parameter
included in the request message. Under the assumption, the
parameter analysis unit 143 estimates that the parameter
included in the request message transmitted before the
above-mentioned one response message is a status-depen-
dent parameter (adds a status-dependent parameter), and
updates the analysis result stored in the parameter informa-
tion storage unit 122.

After the status-dependent parameter has been added,
access to the server apparatuses 231 and 232 by the com-
munication reproduction unit 141 is attempted again. When
the response message received from the server apparatuses
231 and 232 is not equivalent to the past response message
despite the addition of the status-dependent parameter, the
parameter analysis unit 143 determines that there exists an
anomaly in the server apparatuses 231 and 232, for example.
In other words, it is determined that the operation of the
server apparatuses 231 and 232 observed from the client
apparatuses 211 and 212 is not equivalent to that of the
server apparatuses 221 and 222.

However, before evaluating the equivalence of the opera-
tion of the server apparatuses 221 and 222 to the operation
of the server apparatuses 231 and 232, the verification unit
140 may settle the status-dependent parameter first. For
example, the verification unit 140 transmits a request mes-
sage to the server apparatuses 231 and 232 which have
executed the same software as that of the server apparatuses
221 and 222. The verification unit 140 keeps adding param-
eters estimated to be a status-dependent parameter until all
the response messages being received in this occasion are

US 9,438,607 B2

11

equivalent to those transmitted from the server apparatuses
221 and 222 in the past. Subsequently, the verification unit
140 transmits a request message to the server apparatuses
231 and 232 which have executed software different from
that of the server apparatuses 221 and 222 to evaluate the
equivalence of operations.

The display control unit 150 causes the display 111 to
display the verification result of the verification unit 140.

It is assumed in the second embodiment that the verifi-
cation apparatus 100 includes both the learning unit 130 and
the verification unit 140. In other words, it is assumed that
the same physical machine performs both static analysis of
the status-dependent parameter and verification of the server
apparatuses 231 and 232. However, static analysis of the
status-dependent parameter and verification of the server
apparatuses 231 and 232 may be performed by different
physical machines. In such a case, for example, the result of
static analysis of the parameter performed by one of the
physical machines is notified to the other physical machine
which verifies the server apparatuses 231 and 232.

FIG. 6 illustrates an exemplary message table.

A message table 124 is a table stored in the message
storage unit 121, the table having registered therein infor-
mation about messages transmitted or received by the active
server apparatuses 221 and 222. The message table 124
includes columns of message number, time, transmission
source address, destination address, method or code, path,
and a plurality of parameters. For the messages transmitted
or received by the verification server apparatuses 231 and
232, a table of a structure similar to that of the message table
124 is stored in the verification message storage unit 123.

A message number is an identifier for identifying a
message. Message numbers are provided by the capture unit
131 in chronological order of transmission timing, for
example. The time column has an entry of the point of time
when a packet including a message is captured in the
verification apparatus 100. The transmission source address
column has an entry of an identifier of a message transmis-
sion source, such as the transmission source IP address of the
packet including the message. The destination address col-
umn has an entry of an identifier of a destination of a
message such as the destination IP address of the packet
including the message.

A method indicates the type of a request message, such as
GET or POST specified in the header of an HTTP request.
The POST method is mainly used when transmitting data
which has been input to a form by a user, whereas the GET
method is used when there is no such input data. A code
indicates the type of a response message such as the HTTP
status code. It is possible to check whether or not a request
message has been normally processed by the server appa-
ratuses 221 and 222 by referring to a code included in the
response message.

The path column has an entry of an identifier of a Web
resource (e.g., Web page) requested by the server appara-
tuses 221 and 222 such as the URL described in the header
of the HTTP request. Each of the parameter columns has an
entry of a pair of parameter name and value included in a
message. There may exist a message including no parameter,
a message including only one parameter, or a message
including two or more parameters.

FIG. 7 illustrates an exemplary parameter detection table.

A parameter detection table 125 is generated while the
parameter analysis unit 132 performs static analysis of a
parameter, and is stored in the parameter information storage
unit 122. The parameter detection table 125 includes col-
umns of client address, parameter name, and value thereof.

10

15

20

25

30

35

40

45

50

55

60

65

12

A client address is the address (e.g., IP address) of a client
apparatus which transmitted a request message or a client
apparatus to be the destination of a response message. The
client address corresponds to the transmission source
address of the message table 124 for a request message, and
corresponds to the destination address of the message table
124 for a response message. The parameter name column
has an entry of an identifier of a parameter described in a
message. The value column has an entry of the value of a
parameter described in a message.

FIG. 8 illustrates an exemplary analysis result table.

An analysis result table 126 is stored in the parameter
information storage unit 122. The analysis result table 126
includes columns of determination result, parameter name,
and rewriting method.

The determination result column has “dependent” or
“independent” described therein. “Dependent” indicates that
a parameter is a status-dependent parameter whose value
needs to be rewritten when verifying the server apparatuses
231 and 232. “Independent” indicates that a parameter is a
status-independent parameter whose value needs not to be
rewritten when verifying the server apparatuses 231 and
232.

The parameter name is similar to that entered in the
parameter detection table 125. The rewriting method column
has described therein a method of obtaining the value of a
status-dependent parameter at the time of verification. There
is no rewriting method described for a status-independent
parameter. As a rewriting method, there is conceivable, for
example, a method which searches for a particular tag from
among response messages received from the server appara-
tuses 231 and 232 immediately before a request message
including a status-dependent parameter and uses the value
described in the tag as the value of the status-dependent
parameter. Accordingly, an appropriate value according to
the context of communication between the verification appa-
ratus 100 and the server apparatuses 231 and 232 is set to the
status-dependent parameter.

Not all the parameters appearing in the message table 124
are entered in the analysis result table 126. The parameter
analysis unit 132 does not enter, in the analysis result table
126, a parameter which is unidentifiable to be either a
status-dependent parameter or a status-independent param-
eter by static analysis. In such a case, the communication
reproduction unit 141 handles a parameter which has not
been identified as either a status-dependent parameter or a
status-independent parameter, initially as a status-indepen-
dent parameter. However, a part or all of such a parameter
may be estimated to be a status-dependent parameter by
dynamic analysis performed by the parameter analysis unit
143.

Next, procedure steps of the learning unit 130 and the
verification unit 140 will be described.

FIG. 9 is a flow chart illustrating an exemplary procedure
of parameter static analysis.

(S810) The parameter analysis unit 132 selects a message
from the message table 124. As a general rule, messages are
selected in ascending order of message numbers.

(S11) The parameter analysis unit 132 determines whether
or not at least one parameter is included in the selected
message. When at least one parameter is included in the
message, the processing of the following steps S12 to S18
are performed for each parameter. When no parameter is
included, the process flow proceeds to step S19.

(812) The parameter analysis unit 132 determines
whether or not a pair of the client address (target client
address) of the selected message and the parameter name of

US 9,438,607 B2

13

the parameter included in the message (target parameter
name) has already been entered in the parameter detection
table 125. The process flow proceeds to step S14 when the
pair has already been entered in the parameter detection
table 125, or otherwise proceeds to step S13.

(S13) The parameter analysis unit 132 enters, in the
parameter detection table 125, the target client address, the
target parameter name, and the value of a parameter set in
the selected message (target parameter value) in association
with each other.

(S14) The parameter analysis unit 132 searches the
parameter detection table 125 for an entry in which the pair
of the client address and the parameter name matches the
pair of the target client address and the target parameter
name, with the value being different from the target param-
eter value. The process flow proceeds to step S15 when there
exists a candidate entry, or otherwise proceeds to step S17.

(S15) The parameter analysis unit 132 determines the
parameter indicated by the target parameter name to be a
status-dependent parameter, and enters it in the analysis
result table 126 in association with the determination result.

(S16) The parameter analysis unit 132 detects, from a
response message immediately before the selected mes-
sages, a statement (e.g., an HTML tag) which specifies the
target parameter name and sets the value thereof. The
parameter analysis unit 132 then identifies a location where
the value is set in the detected statement, and enters, in the
analysis result table 126, the method of extracting the value
from the location as the rewriting method. Subsequently, the
process flow proceeds to step S19.

(S17) The parameter analysis unit 132 searches the
parameter detection table 125 for an entry in which a pair of
the parameter name and value matches the pair of the target
parameter name and the target parameter value, with the
client address being different from the target client address.
The process flow proceeds to step S18 when there exists a
candidate entry, or otherwise proceeds to step S19.

(S18) The parameter analysis unit 132 determines the
parameter indicated by the target parameter name to be a
status-independent parameter, and enters it in the analysis
result table 126 in association with the determination result.

(S19) The parameter analysis unit 132 determines
whether or not there remains an unselected message in the
message table 124. When there exists an unselected mes-
sage, the process flow proceeds to step S10 to process the
next message (e.g., the message having the number incre-
mented by one). When all the messages have been selected,
static analysis of the parameter is completed.

As thus described, the parameter analysis unit 132 deter-
mines that a parameter having different values set in differ-
ent messages transmitted or received by the same client
apparatus is a status-dependent parameter. This is because
when the same client apparatus sets different values for the
same parameter, there is a high possibility that the parameter
depends on the communication status of a session or the like.
In addition, the parameter analysis unit 132 determines that
a parameter having the same value set in different messages
transmitted or received by different client apparatuses is a
status-independent parameter. This is because when the
different client apparatuses set the same value for a same
parameter, there is a high possibility that the parameter does
not depend on the communication status of a session or the
like.

When determining a status-dependent parameter or a
status-independent parameter, however, the parameter
analysis unit 132 may request, in addition to equality of
parameter name, equality of method or code, or equality of

10

25

30

40

45

55

14

path. Accordingly, even when the same parameter name may
be used for parameters having different meanings among
Web pages of different paths, for example, it becomes
possible to explicitly distinguish between such parameters
having different meanings. In such a case, it suffices to add
a column of method or code and a column of path to the
parameter detection table 125.

FIG. 10 is a flow chart illustrating an exemplary proce-
dure of server verification.

(S20) The communication reproduction unit 141 extracts,
from the message storage unit 121, a list of messages
(messages transmitted between a client apparatus and a
server apparatus) having the same transmission source
addresses and destination addresses. In the list, a plurality of
messages is arranged in chronological order of transmission
timing (e.g., in ascending order of message numbers).

(S21) The communication reproduction unit 141 selects
one of the verification server apparatuses. The communica-
tion reproduction unit 141 then selects request messages
from the list, one by one, in chronological order of trans-
mission timing, and transmits the messages to the verifica-
tion server apparatus. The next request message is transmit-
ted after a response message for the preceding request
message has been received. The communication reproduc-
tion unit 141 stores, in the verification message storage unit
123, the request message transmitted to the verification
server apparatus and the response message (or, a part of
information of each message) received from the verification
server apparatus.

When transmitting a request message, the communication
reproduction unit 141 determines whether or not a status-
dependent parameter is included in the request message to
be transmitted, referring to the analysis result table 126.
When a status-dependent parameter is included, the com-
munication reproduction unit 141 rewrites the value of the
status-dependent parameter according to the rewriting
method entered in the analysis result table 126, and transmits
a request message after parameter rewriting to the verifica-
tion server apparatus. For example, the communication
reproduction unit 141 extracts the value of the status-
dependent parameter from the response message received
from the verification system server apparatus immediately
before, and sets the value to the status-dependent parameter
of the request message to be transmitted.

(S22) The response comparison unit 142 selects one of the
response messages received from the verification server
apparatus. The response messages are selected in chrono-
logical order of reception timing.

(S23) The response comparison unit 142 identifies, from
the list of step S20, a response message of the active system
corresponding to the selected response message of the
verification system, and compares the response messages of
the verification system and the active system. The response
comparison unit 142 then determines whether or not the two
response messages are equivalent. For example, the
response comparison unit 142 determines the two response
messages to be equivalent when the HT'TP status codes are
the same, and not equivalent when the HTTP status codes
are different. The process flow proceeds to step S24 when
the two response messages are equivalent, or otherwise
proceeds to step S25.

(S24) The response comparison unit 142 determines
whether or not there remains a message unselected at step
S22 among the response messages received from the veri-
fication server apparatus. The process flow proceeds to step
S22 when there exists an unselected message, or server
verification is completed when all the messages have been

US 9,438,607 B2

15

selected. In the latter case, for example, the display control
unit 150 causes the display 111 to display the verification
result that the operation of the verification server apparatus
is equivalent to that of the active server apparatuses 221 and
222.

(S25) The parameter analysis unit 143 detects, from the
verification message storage unit 123, a request message
transmitted to the verification server apparatus immediately
before receiving the response message selected at step S22.
The parameter analysis unit 143 then checks the parameter
included in the detected request message. This request
message may include no parameter, or may include two or
more parameters.

(S26) The parameter analysis unit 143 determines
whether or not there exists, in the set of parameters checked
at step S25, a parameter which has not been identified to be
either status-dependent or status-independent (a parameter
which has not been entered in the analysis result table 126).
The process flow proceeds to step S27 when there exists an
undetermined parameter, or otherwise proceeds to step S29.

(S27) The parameter analysis unit 143 estimates the
undetermined parameter to be a status-dependent parameter,
and enters it in the analysis result table 126 in association
with the determination result. When there are two or more
undetermined parameters, the parameter analysis unit 143
may estimate all the undetermined parameters to be status-
dependent parameters, or may estimate only an arbitrary one
to be a status-dependent parameter.

(S28) The parameter analysis unit 143 searches for a
response message received from the verification server
apparatus immediately before the request message detected
at step S25. The parameter analysis unit 143 then detects,
from the detected response message, a statement which sets
the value of the parameter estimated as a status-dependent
parameter, determines the method of rewriting the value, and
enters the method in the analysis result table 126. Subse-
quently, the process flow proceeds to step S21, where the
communication reproduction unit 141 communicates with
the verification server apparatus again, based on the updated
analysis result table 126.

(S29) The display control unit 150 causes the display 111
to display a verification result (error) that the operation of
the verification server apparatus is different from that of the
active server apparatuses 221 and 222.

Comparison (S23) of the response messages of the veri-
fication system and the active system may be started after
communication (S21) between the verification apparatus
100 and the verification server apparatus is completed, or
may be started before completion thereof. In the latter case,
when it is determined that the response message of a
verification system is not equivalent to that of the active
system, communication between the verification apparatus
100 and the verification server apparatus may be terminated
on that time point.

FIG. 11 illustrates an exemplary verification message.

Here, it is assumed that messages #1 to #6 have been
transmitted between the client apparatus 211 and the server
apparatus 221. The message #1 is a request message. The
message #2 is a response message with the code being 200
(normal). The message #3 is a request message and includes
paral=aaa. The message #4 is a response message with the
code being 200 and includes para2=bbb. The message #5 is
a request message and includes paral=aaa and para2=bbb.
The message #6 is a response message with the code being
200. In addition, it is assumed that paral is determined to be
a status-independent parameter by static analysis of the
parameter analysis unit 132, and para2 is undetermined.

10

15

20

25

30

35

40

45

50

55

60

65

16

When verifying the server apparatus 231 using the mes-
sages #1 to #6, the communication reproduction unit 141
transmits a request message to the server apparatus 231
without converting the value of the parameter at the first
time. For example, the communication reproduction unit
141 transmits the message #1 to the server apparatus 231 and
receives the message #2 with the code being 200. In addi-
tion, the communication reproduction unit 141 transmits the
message #3 including paral=aaa to the server apparatus 231,
and receives the message #4a including para2=ccc with the
code being 200. In addition, the communication reproduc-
tion unit 141 transmits the message #5 including paral=aaa
and para2=bbb to the server apparatus 231, and receives the
message #6a with the code being 500 (error).

The response messages to the message #1 have the same
code in the active system and the verification system and
therefore the response messages may be estimated to be
equivalent. The response messages to the message #3 also
have the same code in the active system and the verification
system and therefore the response messages may be esti-
mated to be equivalent. On the other hand, the response
messages to the message #5 have different codes between
the active system and the verification system and therefore
the response messages may not be estimated to be equivalent
(normal and error).

Therefore, the parameter analysis unit 143 extracts para2,
which has not been determined yet, from the message #5
transmitted to the server apparatus 231 immediately before
the message #6a which turned out to be an error, and
estimates para2 to be a status-dependent parameter. In
addition, the parameter analysis unit 143 determines the
method of rewriting the value of the status-dependent
parameter from the message #4a received from the server
apparatus 231 immediately before the message #5. Here, the
parameter analysis unit 143 determines that the value of
para2 included in the message #4a needs to have been used
in the message #5.

The communication reproduction unit 141 then transmits
a request message to the server apparatus 231 while con-
verting the value of para2 at the second time. For example,
the communication reproduction unit 141 transmits the
message #1 to the server apparatus 231 and receives the
message #2 with the code being 200. In addition, the
communication reproduction unit 141 transmits the message
#3 including paral=aaa to the server apparatus 231 and
receives the message #4b including para2=ddd with the code
being 200. In addition, the communication reproduction unit
141 transmits the message #5b including paral=aaa and
para2=ddd to the server apparatus 231, and receives the
message #6a with the code being 200.

The messages #2, #4b, and #6 which are response mes-
sages of the verification system at the second time have the
same codes as those of the messages #2, #4 and #6 of the
active system, and therefore may be estimated to be equiva-
lent. As thus described, para2 which has not been deter-
mined by static analysis of the parameter analysis unit 132
is estimated to be a status-dependent parameter by dynamic
analysis of the parameter analysis unit 143. Accordingly, the
mismatch of response messages due to inappropriately
rewritten value of a session-dependent or a server-apparatus-
dependent parameter may be removed in the course of
communication with the verification server apparatus.

Next, a variation of static analysis performed by the
parameter analysis unit 132 will be described. In the fore-
going description, comparison of parameter names and
values thereof between messages has been preferentially
performed in ascending order of message numbers. In the

US 9,438,607 B2

17

variation described below, comparison is performed in a
preference order different from the foregoing.

FIG. 12 illustrates a first example of the message selection
method.

The parameter analysis unit 132 may select, from among
the messages entered in the message table 124, a request
message more preferentially than a response message, and
extract a set of client address, parameter name and value. In
addition, the parameter analysis unit 132 may extract a set
of client address, parameter name and value only from a
request message.

For example, the parameter analysis unit 132 extracts
“version=1.0" from the request message having “num-
ber=1" and enters it in the parameter detection table 125.
Next, skipping the response message having “number=2",
the parameter analysis unit 132 extracts “authtoken=0fa5”
and “user=Taro” from the request message having “num-
ber=3”, and enters them in the parameter detection table
125. Next, the parameter analysis unit 132 skips the
response message having “number=4" and extracts “ver-
sion=1.0" from the request message having “number=5".
Since the client address, and the parameter name and value
are the same as existing ones, the parameter analysis unit
132 does not determine “version” to be either a status-
dependent parameter or a status-independent parameter at
this point.

Next, the parameter analysis unit 132 skips the response
message having “number=6" and extracts
“authtoken=3b2¢” and “user=Taro” from the request mes-
sage having “number=7". Although the client address and
the parameter name for “auth_token™ are the same as exist-
ing ones, the value thereof is different from the existing one.
Therefore, the parameter analysis unit 132 determines
“auth_token” to be a status-dependent parameter. The
parameter analysis unit 132 does not determine “user” to be
either a status-dependent parameter or a status-independent
parameter at this point.

Next, the parameter analysis unit 132 skips the response
message having “number=8” and extracts “version=1.0"
from the request message having “number=9". Since the
parameter name and value are the same as existing ones
whereas the client address is different from the existing one,
the parameter analysis unit 132 determines “version” to be
a status-independent parameter. Next, the parameter analysis
unit 132 skips the response message having “number=10"
and extracts “authtoken=d97e¢” and “user=Jiro” from the
request message having “number=11". The parameter analy-
sis unit 132 does not determine “user” to be either a
status-dependent parameter or a status-independent param-
eter.

As thus described, skipping response messages may
reduce the number of messages to be processed. In addition,
since the number of parameters included in a request mes-
sage is usually smaller than the number of parameters
included in a corresponding response message, the number
of comparisons between parameters may be reduced. On the
other hand, in terms of detecting a parameter whose value is
to be rewritten when transmitting a request message to the
server apparatuses 231 and 232, a parameter included in the
request message are more important than a parameter
included in the response message. Therefore, static analysis
of parameters may be performed efficiently by selecting a
request message preferentially.

After having processed a request message preferentially,
the parameter analysis unit 132 may further process a
response message. In this occasion, the parameter analysis
unit 132 may allow a user to choose whether or not to

10

15

20

25

30

35

40

45

50

55

60

65

18

continue the static analysis when having processed the
request message, and may further process the response
message when the user chooses to continue the static analy-
sis. In addition, the parameter analysis unit 132 may process
response messages in succession while the elapsed time
from starting the static analysis to completing processing of
request messages is equal to or less than a threshold value.
Alternatively, the parameter analysis unit 132 may keep
selecting messages until the elapsed time from starting the
static analysis reaches a threshold value. Accordingly, the
determination precision of a status-dependent parameter
may be improved in a range where the processing time is not
too long.

Next, another method of selecting messages will be
further described.

FIG. 13 is a flow chart illustrating another exemplary
procedure of parameter static analysis.

(S30) The parameter analysis unit 132 divides the set of
messages entered in the message table 124 into a plurality of
blocks, maintaining the time sequence. For example, the
parameter analysis unit 132, having preliminarily deter-
mined the number of messages per block (predetermined
number), groups the messages by the predetermined number
in chronological order of transmission timing.

(S31) The parameter analysis unit 132 initializes the block
number N to 1.

(S32) The parameter analysis unit 132 selects, from the
block column maintaining the time sequence, the Nth block
from the top (Nth oldest transmission timing).

(S33) The parameter analysis unit 132 performs param-
eter static analysis illustrated in FIG. 9 in the block selected
at step S32. For example, the parameter analysis unit 132
selects a message in the selected block in chronological
order of transmission timing, and enters the extracted client
address, parameter name and value in the parameter detec-
tion table 125.

(S34) The parameter analysis unit 132 determines
whether or not there remains a block which has not yet been
selected at step S32 or step S35 described below. The
process flow proceeds to step S35 when there exists an
unselected block, or otherwise the parameter static analysis
is completed.

(S35) The parameter analysis unit 132 selects, from the
block column maintaining the time sequence, the Nth block
from the bottom (Nth newest transmission timing).

(S36) The parameter analysis unit 132 performs the
parameter static analysis illustrated in FIG. 9 in the block
selected at step S35. For example, the parameter analysis
unit 132 selects a message in the selected block in chrono-
logical order of transmission timing, and enters the extracted
client address, parameter name and value in the parameter
detection table 125.

(S37) The parameter analysis unit 132 determines
whether or not there remains a block which has not yet been
selected at step S32 or step S35. The process flow proceeds
to step S38 when there exists an unselected block, or
otherwise the parameter static analysis is completed.

(S38) The parameter analysis unit 132 increments the
block number N (adds one to the value), and the process flow
proceeds to step S32. The parameter detection table 125
keeps being used without initialization while parameter
analysis of steps S33 and S36 is being repeated. In other
words, the set of client address, parameter name and value
extracted in a block is to be compared with a set extracted
in another block.

FIG. 14 illustrates a second example of the message
selection method.

US 9,438,607 B2

19

Here, 10,000 messages have been entered in the message
table 124 and divided into 2000 blocks each including five
messages. First, the parameter analysis unit 132 processes
messages #1 to #5 belonging to the first block from the top.
Next, the parameter analysis unit 132 processes messages
#9996 to #10000 belonging to the first block from the
bottom. Next, the parameter analysis unit 132 processes
messages #6 to #10 belonging to the second block from the
top. Next, the parameter analysis unit 132 processes mes-
sages #9991 to #9995 belonging to the second block from
the bottom.

As thus described, the parameter analysis unit 132 may
perform a comparison of parameters between temporally-
separated messages more preferentially than a comparison
of parameters between temporally-close messages. Here,
values of session-dependent parameters are the same, as a
general rule, between messages belonging to the same
session. In addition, there is a high possibility that messages
transmitted by the same client apparatus at close transmis-
sion timings belong to the same session. Therefore, the
parameter analysis unit 132 may perform a comparison of
parameters between messages belonging to different ses-
sions at an early stage by selecting messages in the order
described above, allowing efficient detection of session-
dependent parameters.

According to the information processing system of the
second embodiment, it is possible to automatically deter-
mine, from among parameters which may be included in a
message, status-dependent parameters such as session-de-
pendent parameters or server-apparatus-dependent param-
eters. Therefore, when verifying the verification server appa-
ratuses 231 and 232, using messages transmitted between
the client apparatuses 211 and 212 and the active server
apparatuses 221 and 222, it becomes possible to prevent
incorrect verification due to deficiency of parameter values.
In addition, the user need not preliminarily define the
status-dependent parameter whose value is to be rewritten
and therefore the user need not know the details of the
software to be executed on the server apparatuses 221, 222,
231 and 232, and thereby the burden of the user is reduced.

Third Embodiment

A third embodiment will be described. Difference from
the aforementioned second embodiment will be mainly
described, and description of items similar to those of the
second embodiment will be omitted.

In the second embodiment, the verification apparatus 100,
the client apparatuses 211 and 212, and the server appara-
tuses 221, 222, 231 and 232 are separate physical machines
respectively connected to a network. However, it is also
possible to virtualize two or more of the aforementioned
computers and cause the two or more virtual machines to
operate on the same physical machine. In the third embodi-
ment, an example will be described in which virtual
machines corresponding to the verification apparatus 100,
the server apparatus 221 (active system), and the server
apparatus 231 (verification system) operate on the same
physical machine.

FIG. 15 is a block diagram illustrating another exemplary
function of the server apparatuses.

A server apparatus 300 has virtual machines 310, 320 and
330, and a hypervisor 340. The virtual machines 310, 320
and 330, and the hypervisor 340 operate using a CPU and a
RAM, for example. The virtual machine 310 corresponds to
the server apparatus 221 of the second embodiment, and the
virtual machine 320 corresponds to the server apparatus 231

10

15

20

25

30

35

40

45

50

55

60

65

20

of the second embodiment. The virtual machine 330 corre-
sponds to the verification apparatus 100 of the second
embodiment.

The virtual machine 310 executes the OS and server
software 311 thereon. The server software 311 may be the
same as the one being executed on the server apparatus 221.
The virtual machine 320 executes the OS and server soft-
ware 321 thereon. The server software 321 may be the same
as the one being executed on the server apparatus 231. The
virtual machine 330 executes the OS and verification soft-
ware 331 thereon. The verification software 331 includes,
for example, a module corresponding to the learning unit
130 and the verification unit 140.

The hypervisor 340 provides control so that a plurality of
virtual machines operates in parallel. The hypervisor 340
allocates, to the virtual machines 310, 320 and 330,
resources provided in the server apparatus 300 such as the
number of CPU clocks or RAM areas. The OS operating on
each virtual machine provides control so that the application
software is executed on the virtual machine within the
resources allocated by the hypervisor 340.

The hypervisor 340 has a virtual switch 341. The virtual
switch 341 manages band resources of the communication
interface provided in the server apparatus 300. In addition,
the virtual switch 341 relays messages between the virtual
machines 310, 320 and 330, and between a communication
apparatus outside the server apparatus 300 and the virtual
machines 310, 320 and 330. For example, the virtual switch
341 relays messages between the client apparatuses 211 and
212 and the virtual machine 310, and outputs copies of the
messages to the virtual machine 330. In addition, the virtual
switch 341 relays messages between the virtual machine 320
and the virtual machine 330.

According to the information processing system of the
third embodiment, an effect similar to that of the second
embodiment is brought about. Furthermore, in the third
embodiment, it is possible to consolidate, using the com-
puter virtualization technology, a plurality of computers
having different functions on the same physical machine,
thereby suppressing the management cost of the information
processing system. In addition, collection of messages trans-
mitted or received by the server software, or verification of
the server software may be efficiently performed using a
virtual machine.

As has been described above, information processing of
the first embodiment may be realized by causing the infor-
mation processing apparatus 10 to execute a program. In
addition, the information processing of the second embodi-
ment may be realized by causing the verification apparatus
100 to execute a program, and the information processing of
the third embodiment may be realized by causing the server
apparatus 300 to execute a program.

A program may be stored in a computer-readable record-
ing medium (e.g., the recording medium 113). As a record-
ing medium, a magnetic disk, an optical disk, an MO
(Magneto-Optical) disk, a semiconductor memory or the
like may be used, for example. The magnetic disk includes
a floppy disk or an HDD. The optical disk includes a CD
(compact disk), a CD-R (Recordable)/RW (Rewritable), a
DVD or DVD-R/RW. A program may be stored in a portable
recording medium for distribution. In such a case, the
program may be copied (installed) on another recording
medium such as an HDD (e.g., the HDD 103) from the
portable recording medium for execution.

In one aspect, it becomes easy to verify a server, using a
message related to another server.

US 9,438,607 B2

21

All examples and conditional language provided herein
are intended for the pedagogical purposes of aiding the
reader in understanding the invention and the concepts
contributed by the inventor to further the art, and are not to
be construed as limitations to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although one or
more embodiments of the present invention have been
described in detail, it should be understood that various
changes, substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.

What is claimed is:
1. An information processing apparatus comprising:
a memory configured to store a plurality of messages
transmitted from a client to a server, the plurality of
messages including a first message and a second mes-
sage, the first message including a name of a parameter
and a first value of the parameter, the second message
including the name of the parameter and a second value
of the parameter; and
a processor configured to perform a procedure including:
comparing the first value and the second value and,
according to a result of the comparing, determining
whether the parameter is a status-dependent param-
eter whose value depends on a communication status
between the client and the server; and

when the parameter is a status-dependent parameter,
rewriting the first value of the first message and the
second value of the second message, and transmit-
ting the rewritten first message and the rewritten
second message to another server for verification of
said another server.

2. The information processing apparatus according to
claim 1, wherein

the plurality of messages further includes a third message,
the third message including the name of the parameter
and a third value of the parameter;

transmission of the third message from the client to the
server is later than the first message and earlier than the
second message; and

the comparing between the first value and the second
value is performed prior to a comparison between the
first value and the third value.

3. The information processing apparatus according to
claim 1, wherein when the first value and the second value
are different, the parameter is determined as a status-depen-
dent parameter.

4. The information processing apparatus according to
claim 1, wherein

the memory further stores a fourth message transmitted
from another client to the server, the fourth message
including the name of the parameter and a fourth value
of the parameter, and

the procedure further includes:
comparing the first value and the fourth value and,

when the first value and the fourth value are same,
determining the parameter as a status-independent
parameter whose value is independent from the
communication status; and

5

20

40

45

50

55

22

when the parameter is a status-independent parameter,
transmitting the first message and the second mes-
sage to said another server without rewriting the first
value and the second value.

5. The information processing apparatus according to
claim 1, wherein

the memory further stores a response message transmitted

from the server to the client, the response message
including the name of the parameter and a fifth value of
the parameter, and

the comparing between the first value and the second

value is performed prior to a comparison between the
first value and the fifth value.

6. The information processing apparatus according to
claim 5, wherein

transmission of the response message from the server to

the client is earlier than the second message; and

the procedure further includes determining a method of

rewriting the second value of the second message,
based on the response message.
7. A verification control method comprising:
obtaining, by a processor, a plurality of messages trans-
mitted from a client to a server, the plurality of mes-
sages including a first message and a second message,
the first message including a name of a parameter and
a first value of the parameter, the second message
including the name of the parameter and a second value
of the parameter;
comparing, by the processor, the first value and the second
value and, according to a result of the comparing,
determining whether the parameter is a status-depen-
dent parameter whose value depends on a communi-
cation status between the client and the server; and

when the parameter is a status-dependent parameter,
rewriting, by the processor, the first value of the first
message and the second value of the second message,
and transmitting the rewritten first message and the
rewritten second message to another server for verifi-
cation of said another server.
8. A non-transitory computer-readable recording medium
storing a computer program, wherein the computer program,
when executed by a computer, causes the computer to
perform a procedure comprising:
obtaining a plurality of messages transmitted from a client
to a server, the plurality of messages including a first
message and a second message, the first message
including a name of a parameter and a first value of the
parameter, the second message including the name of
the parameter and a second value of the parameter;

comparing the first value and the second value and,
according to a result of the comparing, determining
whether the parameter is a status-dependent parameter
whose value depends on a communication status
between the client and the server; and

when the parameter is a status-dependent parameter,

rewriting the first value of the first message and the
second value of the second message, and transmitting
the rewritten first message and the rewritten second
message to another server for verification of said
another server.

